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DYNAMIC LOADS ON AIRPLANE STRUCTURES DURING LANDING

- By M, A, Biot and R, L. Bisplinghoff
1. SUMMARY

The application of transient theory to the rational
determination of dynamic loads on airplane structures during
initial landing impact ie discussed. Simplified procedures
are described by which the distridution of the maximum at-
tainable value of the dynamic stresses In the structure may
be obtained., Illustrations of the procedure are given by
numerical examples for the case of airplane wings. This
indicates approximate orders of magnitude to be expected in
a typical problem. The validity of the underlying eimplifi.
cations and assumptions is discussed., 4 bdrief outline of
the general mathematical theory of transients in undamped
elastic system 1s presented.

2. INTRODUCTION

During landing, the airplane structure undergoes
transient oscillations which are excited by the initlal land-~
ing impact, Recent experience has shown that in the case of
large aircraft these oscillations may produce critical design
conditions for the structure; whereas heretofore design loads
for the landing condition have been based upon calculations
which assume the structure to be rigid. Since the advent of
larger aircraft has resulted in heavier and more flexlibdle
structures, these calculations are consideradly in error,
This together with the fact that flight load factors are re-
duced in the case of large alrcraft makes it necessary that
methods be developed for predicting dynamic landing loads,
The present theoretical investigation of this prodblem is of a
preliminary nature, It has the twofold purpose firet of pre-
senting methods by which the deslgner may predict the dynamic
loads and second of serving as a guide in the experimental
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investigation by defining the significant factors involved
and determining the apprig;pate magnitude ff the quantities
g ‘?._t" ety S ien ety p

v

to be measured.

It appears that the problem may be approached in two
. different ways:

In the case of the landplane to consider the airplane
structure and its landing gear as a whole, and to introducs
the actual force displacement characteristics of the landing
into the tkeory. 1In thls procedure the dynamic stresses re-
sult from the sudden application of moving constraints im-
posed on the airplane during landing., Similarly for the
seaplane the elastic structure and the water surrounding the
hull may be considered as interacting bodies. While this
method is not precluded in the investigation of specifiec
cases or for research purposes, 1t involves inherent complex-
ities, such as those resulting from the nonlinear properties
of the landing gear and the variable-mass effects of the
water surrounding the hull of a ssaplane, which tends to make
this type of approach less adequate for design purpose.

In the other procedure, in which stresses in the struc-
ture are considered to be caused by a landing impact force
applicd directly to the structure, it is assumed that the
time history of the impact force may be investigated inde-
pendently of the elastic properties of the structure. In
this way the 1nvestigation involves two separate phascs - a
study of the landing forces and a study of the dynamic be-
havior of the structure under such forces. This procedure
involves the assumption that a landing impact force may be
defined in such a way that its time history is for all prac-
tical purposes independent of the elastic properties of the
structure. Since it is believed that the relative simplicity
of the latter approach overchadows the approximations in-
volved, it has bveen adopted as the basis for the present work.
This procedvre was described previously in reference 1 in
connection with the problem of dynamic stresses in buildings
during an earthquake and the present work is essentially an
adaptation to alrcraft structures of the methods described
in this refersnce,

It is assumed that in first approximation the damping
and the aerodynamic forces may be neglected. The landing
impact force is applied directly to the elastic structure as
an external force of given time history. The response of
the structure is represented as a superposition of natural
modes excited by the larnding impact. A first step in the
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analysis 1s therefore to obtain the natural modes of the air-
plane either by calculation or by a shake test. Calculation
methods have recently been developed by which natural modecs
of alrplanes may be derived in a relatively simple way.

An important feature of the designer’s approach to tha
landing loads problem is the fact that he is not so much in-
terested in the actual time history of the structure as he
1s in the magnitude of the highest attainable stresses during
the operation of the airplane. This viewpoint was introduced
in the procedure by using a statistical approach. The stress
amplitudes of each mode are superposed with their positive or
negative values irrespective of phase and the worst possibdle
combination is used as a basis for design. Furthermore, the
streses history in each mode 1s not actually computed but the
stress amplitude 1s obtained directly from a graph represent-
ing what is designated as a "dynamic response factor." This
factor itself results from a statistical analysis of the ef-
fect of forces of various time histories on a single degree
of freedom oscillator, using a sufficient number of such time
histories to represent all possible types of landing condi-
tions. Values of the dynamic response factors are obtained
by applying typical time history excitations to a torsional
pendulum (described in reference 1) and measuring the maxi-
mum amplitude of its response, In this way, when the natural
modes of the airplane are known, the landing loads are read-
i1ly obtained without the necessity of integrating the dif-
ferential equations which govern the behavior of the elastic
structure in the transient condition.

The method has its limitations and is not necessarily
applicable to all types of transient problems. Some of
these limitations are pointed out in the discussion,but the

extent to which the methods are valid for some particular
class of problems will have to be determined experimentally.

3. NOTATION

M,n mass
k spring constant

Q(t) generalizeda force

w circular frequency




F(t)
N(t)
D(t)
a(t)
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period

time varlabdle

dynamic response factor

generallzed coordinate

deformation displacement of any point on the wing
normal function descriding the wing mode shape

normal functlion describing the mode shape of twiating
about the clastic axis

normal function describing the mode shape of bending
of the clastic axis

moment of inertia

static mass moment

subscript denoting Jth mode

subscript denoting kth spanwise wing station
mass per‘unit volume of prismatic beam
cross-sectional area of prismatic beanm
modulus of elasticity

vertical landing load factor

landing reaction

shock strut axial force - time relation

drag force -~ time relatlion caused by wheel spin-up

observed acceleration time history in a drop or
landing test

gross welght of airplane

gross welght of airplane less landing geaf welight
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r, effective rolling radius of wheel

Vi landing speed

W coefficient of sliding friction of tire on runway

8 stress

Iy moment of inertia of wheel and tire about axis of
rotation

TIN perlod of shock strut axial impulse or seaplane
vertical impulse

TID period of drag impulse

2 angular displacement of wheel

4, TEE EVALUATION OF TRANSIENT MOTION OF ELASTIC BODIES

3Y THE USE OF GENERALIZED COORDINATES

As pointed out in the introduction,the theory proceeds
on the assumption that the landing impact force is known,
In this way the theoretical problem 18 reduced to the evalu-
ation of the respornse of an elastic structure to a force of
given time history. Methods for the determination of this -
landing impact force from test data will be discussed later
in seetion 5.

In order to introduce the fundamental concepts involved
in the present theory, the simplest possible elastic systenm
will first be considered. This system is 1llustrated in fig-
ure 1 as a single mass oscillator,

- q

SNNN

M j«—F(t)

7727 7S 7T E ]SS

Figure 1
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Denoting by M the mass and w the natural frequency of
oscillation (w 1s the circular frequency expressed in
radians/sec), the epring constant 1s k = M w8 The expres-
gion giving the displacement gq of this mass under a force
F(t) of arbitrary time history is well known (references 2,
3, and 4). It may be written as:

t N
q = ﬁEL/QF(T) sin w(t -~ T)drT (1)
0

where T 18 a variable of integration. It is usually desig-
nated as Duhamel's integral, According to this formula the
computation of the displacement gq at the instant t re-
quires the evaluation of a definite integral between the
limite of integration O and ¢, and the time history of g
is odtalned by repeating this process for every value of ¢&.
It is noted that even in the simple case of a single-mass
system the process of computing the transient response 1le
gquite elaborate, Fortunately, this difficulty may be avoided
in adapting the theory to practical problems of design by
considering only the maximum value of gq instead of its com-

plete time history. How this ie achieved will be explained
later (sec. 7).

Agsume for the present that the complete time history
of the deformation in the airplane structure 1s desired.

Such a structure differs from the simple system of figure 1
by two features:

(a) It is a free body.

(p) It ie an elastic body with many degrees of freedom.

In order %o show how the previous discussion may be ex-~
tended to include these features, consider a free system of

two masses M and m connected by a spring of constant k
as {llustrated by figure 2.

4—-——X1
~“—— X -
N
VT T o7 7 a7 7 S 7

Figure 2
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The mass M 1is under the action of a force TF(t) of arbi-
trary time history. The straightforward way of describing
the motlion of thisg system is in terms of the displacements

xy and@ xp of each mass. However, there is a more general
approach, By an elementary analysis it 1s shown in appendix
IT that thie motion may be described as the superposition of
two configurations., One in which the two masses move to-
gother as a rigld body (fig. 3a), the other in which the cen-
ter of gravity remains fixed with the masses moving in oppo-

site phase and with amplitudes inversely proportional to the
respective masses (fig. 3b),

Fixed c.g m
< <377
Qo ql—.—y \J M 1

- H
o ¥ =t
VST AV SV ANy S s s

77 ST ST 7T
(a) Rigid configuration » (b) Motion about Cee
" Figure 3

Each of these configuratione has only one degree of freedon,
The displacement in the first configuration is measured by
the quantity q, &and in the other by the quantity gq,. The

actual.displacements of the masses M and m in terms of
the motion of each configuration are,respectively,

i}
x1=qo+ﬁq1

(2)

X2

Qo = Q1

These two configurations may be interpreted physically as
representing the natural modes of osclillations of the system.
From this viewpoint the rigid translation q, may be thought

of as a mode of zero frequency or "gero mode." The other
configuration where the center of gravity remains fixed and
the masses move in opposite phase represents a node of fre-
quency wji. Since the coordinate gqo of the zero mode rep-
resents the motion of the center of gravity, it is determined
by the motion of a single mass My = M + m under the force
P(t) (fig. 4a). As shown in appendix II, the motion in the
mode defined by ¢, may be determined from that of an equiv-
alent system which is constituted of a single mass M;
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elastically'restrained and under the action of a force Q;(t)
proportional to F(t) (fig. 4b).

- qo Kk ~—q]
4 1
Mo | F(t) A——Ann—uy 01 (8)
f’TTa)IIII /7////(b)/// I(
Figure 4

The natural frequency of this equivalent system is the same
w3 as the natural frequency of the mode which it represents

in the actual physical system, Such coordinates as gq, and
q; are called generalized coordinates., The mass My of the
equivalent system is referred to as the generalized mass of
the corresponding mode and Q,(t) 1is referred to as the
generalized force for this same mode., It is also shown (see
appendix II) that the value of this generalized mass is de-

rived quite simply by expressing that the kinetic cnergy T

in the equivalent system is the same as in the corresponding
mode

polu gt elagteluoer g, (3)
where ¢ = % is the ratio of the amplitudes of the masses m
and M in the q; modse.

Hence M, = m + M &° ‘ (4)

Similarly the generalized force Ql(t) is derived by

expressing that the work done by F(t) on the actual system

is equal to the work done by Qi(t) on the equivalent sys-
tem - that 1s,

$ q, F(t) Q1(t) qQ;

or (5)
Q. () ¢ F(t)

i

The problem of finding the transient motion of two masses

connected elastically has thus been reduced to that of two
independent single masses for which the motion may be ex-

pressed by Duhamel's integral (equation (1)).
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Consider now a simplified airplane in which the wihg is
represented by two masses elastically connected to a rigid
fuselage as illustrated in figure 5a. *

13— M

P
(a)
e} — w0 | g c.gm
;'; /2 ?F(t) m/2
F(t) (e)
(®) Figure 5

Obviously, for symmetric deformations this simplifled
structure is equivalent to the two-mass free system of fig-
ure 2. The motion under the landing impact force may be
described as the superposition of a rigid translation (f1g.
5b) which represents the motion of the center of gravity and
a natural mode (fig. 5c¢) which represents the motion adbout
the center of gravity. The equivalent single mass systems
are the same as in figure 4.

. This procedure may be immediately generallized to a com=-

b plex airplane structure. Instead of a single deformation

mode as in the case of the simplified airplane discussed

above, there are actually an infinite number. It can be

shown that the deformation of the structure may be repre-
sented by a superposition of these modes. If damping is

‘ neglected as is the case here, these modes are uncoupled,

; The behavior of each one under the landing impact force ie

| independent of the other. The motion of each mode is repre-
sented by that of an equivalent single mass oscillator of

' the same natural frequency and excited by a generalized

’ force. As an sxample, take the case of a wing in pure vend-

1 ing. There are an infinite number of bending modes, a few
of which are represented in figure 6. The motion of the

] center of gravity represented by the rigid airplane with the

| generalized coordinate gqo. is referred to in the present

| text as the "zero mode."
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¢ M g F(t)
q Zero mode .
10 *F(t) . ///r////r!
. y Mupd <«—q
_d N First wode J—— v A—dMy fae—Q1(t)
i F(t) ’ T 7 7 77 7 7 7 7
a1 kp=MoWy ™ L——qp
NG S ] 1
2 ~ ;}1/’—5\\\\ ec;zde A— NN M |2 Q2(t)
l T om0

F(t)
2 ‘Pigure 6

The amplitudes of the wing tip are usually selected as
generalized coordinate and denoted by qy for the first
mode, qg for the second mode, and so forth, The correspond-

ing generalized masses are determined by the qondition that
the kinetic energy be the same for the mode and its equivalent
system, Thie yields the expression:

e
2
Mz = Z[Cb_(;)] mp, and so forth

(3

In these expressions, ¢ k represents tho amplitude at

station k of the mass my of tkhat station in the Jjth mode

for a unit deflection of the wing tip. Similarly, the gen-
eralized forces determined by the conditions that the work
done by F(t) be the same in the particular mode as the
work done by Q(t) 1in the equivalent system are

(6)

Q, () = 7(s) 6fL)

(7)
Q (%)

"

F(t) ¢(§), and so forth

The subscript F refers to the station at which the landing
impulse force is applied.
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5. THE LANDING IMPACT FORCE F(t)

In the preceding discussion, the time history TF(t) of
the externally applied landing impact force is assumed to be
known, In the case of a landplane, the forces are applied
to the wing through an oleo strut. In the case of a flying
boat, they are transmitted to the wing through a hull or

pontoon.

For the landplane, a convenient source of information
of axial strut characteristics is the oleo drop test. In
the drop test, a mass-o0leo strut system is dropped in a Jig,
and the acceleration time history of the mass 1s measured.
The mass corresponds to the zero mode mass.

F(t) = M a(t) (8)

An sdditional source of landing force data is from

actual landings wlth accelerometers installed in the airplane

which are capable of recording time history. This method
provides the only present source of seaplane data. A sketch
of such a record is shown in figure 7.

a(t)

~

oscillograph record N

- - - — = — — assumed a(t) curve

Figure 7

The high. frequency oscillations must be disregarded
since they represent oscillations of the structure relative
to its coenter of gravity, The average dotted line which 1is
shown would be considered as a(t) in the computation of
the applied landing force F(t) 1in equation (8).

6. EVALUATION OF THE STRESSES

Having derived the time history of the deformation of
the structure, the time history of the stresses is obtained
by a strailghtforward procedure., In this discussion, stress
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is used as a general term which rofers to shear or moment,
It 18 conveniont to consider the total strese as resulting
from the superposition of the stresses due to the deformation
in each mode. In this approach, the gero mode which is a
rigid motion does not contribute any strese. Only the firet
mode, second mode, and so forth, have to be consldered.

From a practical viewpoint it is also important to note that
the stresses in each mode are convéniently calculated by us-
ing the inertia forces of the natural oscillation rather
than by trying to calculate the strain from the space curva-~
ture of the mqde shapes. Consider, for example, a pure
bending mode as represented in figure (8).

s ¢(l) (x)ql
{

] \ \ i v
— R oIt
T wy? m 4@ q

Figure 8

The shape of this mode is represented by a function

¢(1)(x) such that 1f ¢q; 1is the tip deflection ¢(1)xq1

is the defloction at the location x. The bending moment
in this mode 1is

M(x) = BI .QE_QE;;LEL q, (9)
dx

M 1is proportional to g, and varies along the span as

s1 206

ax?

second derivative of ¢(1)(x) is elaborate and inaccurate.
It is therefore preferable to derive the bending moment 1in
each mode directly from d'Alembert's principle by expressing
the equilibrium condition which exists in the natural mode

between the bending moment at statlion k and the inertila
forces wlz oy ¢(; q, due to cach mass oy located out=-

Obviously the process of computing the

board from x, Similarly the. shear in each mode may be o0ob-
tained from the summation of all inertia forces,
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It 1s seen that the stress 8(£) in the Jjth mode at
the kth wing station may be expressed as

(3 - A0
al'z _A'k-’ 1, - (10)

each of these streseee being propoertional to the coordinate
ay of the corresponding mode. The total strees is obtalned

by superpositlion and 1

B = i A(kd) a3 (11)

1

7. THE DYNAMIC RESPONSE FACTOR Y

It has been shown that the response of each mode 1s de-
fined by ,the motion of an equivalent simple oscillator acted
upon by a gencralized force Q{(t). The motion of a simple
oscillator undcr the action of an arbitrary force F(t) 1se
glven by an cvaluation of Duhamel's integral as shown by
~equation (1). Consider, for cxamplo, the motion of a simple
oscillator under the influence of the isosceles triangle
force~time impulse shown in figure 9.

Q
A ‘——‘q '
] x=mw? Omax a(®)
f—ArA~——| M e—Q(t)
’ o
P, rd ERY SRy A SR e 4 rd r 7 77
T “—
PR ¢
Figure 9 .
Let q_ = static displacement caused by Q

‘max

=
it

2n/w = natural period of the oscillator
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The complete time histories of the motion of the oscillator
have been evaluated for the isoeceles triangular impulse for
two ratios of T3;/T, and are plotted in figure 10, The re-

sponge of the osclllator is expressed as a ratio of 1its ac-~
tual displacement to its static displacement under Qp,g-

period of the triangular impulse

7 1]
o
/ \ }
l-r "A \\ . l.. /\
} '/\ '.\ g / \ e - - ~
/I \|‘ N l’ : g / \ s/ 4—‘ \\
- \ p‘ -1 ’
AR R I A U
/! N oy m |/ TN ‘ .
ol ¥ N L /0 - , ¥ PN
\ M ] A1 1 ™ ~+ T . R
TIT ! \ 2‘1’& \ ,’ 3T 1 I St ‘YT
\_Yz \ ~ -1
1 1 ! | ' ! 1 N
| \ i \\
RN
14 a4
71/T = 1.25 T1/T = .25
Figure 10
For each period ratio Tr/T there is a maximum value of
q/qB in the positive direction, and a maximum value in the

nogative direction, These maximum values are designated here

as dynamic response factors and denoted by Y
sign affizxsd. There are two values of 7Y assoclated with
each period ratio as shown dy figure 10,
may be drawn showing the variation of dynamic response factor
with period ratio. Such a curve for the isosceles triangular

impulse is shown by figure 1l.

with the proper

Consequently a curve
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/ 2
123
2 1 / ‘T\\ . /\\
A Q(t) 3 A *Yl
—_ 2
g |
| A
: 6]
| g Y 2 //
T ] 3
< y
k'-—-TI ??' -1 \//

0 1 & e
11 . Eeriod of impulse
Figure 11 T; Period of oscillator

The determination of a dynamic response factor-period ratio
curve may be accomplished for any arbitrary Q(t) variation
by a numerical or analytical evaluation of Duhamel's integral.
However, both processes are quite lengthy, and require plot-
ting of the time history as shown by figure 10, A mechanlecal
analyzer consisting of a torsional pendulum has been dovel-
oped (reference 1) which may be used to measure the dynamic
responee faetor without recourse to an evaluation of the com-
plete time history of the motion. By such means, a dynamic
response factor diagram for any shape of Q(t) curve may be
evaluated 1in a relatively short time.

8, STATISTICAL APPROACH TO THE LANDING PROBLEM

The methods outlined above are applicable when the time
history of the externally applied landing impact forces are
accurately known. Actually, the shape of the landing impact
force~-time curve is apt to vary consideradbly from one landing
to the next, and with different operating conditlons of the
aeirplans, Purthermore, the responses of the various modes
are sensitive to small variations in the shape of the F(t)
curve, For these reasons, it 1s not practical to design for
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a single mathematical landing, but instead it is desirabdle
to employ a statistical approach to the problem. In the
previous section 1t was shown that the extreme pzsitions of
oscillation of a simple oscillator for any one type of ap-
plied rorce~tlime curve may be conveniently represented by
means of a dynamic response factor-period ratio curve. It
is posslble to consider a large number of shapes of landing
force~time curves varying from soft to harsh landings, and
evaluate a dynamic response factor-period ratio curve for
each of them, These curves may be plotted on the same graph,
and an envelope curve may be drawn which bounds all of then,
This envelope would represent conditions which exceed in
severity every type of landing which was considered. BSuch a
statistical basis may be used to establish design landing
dynamic response factor envelopes for the landplanc and the
seaplane. (TFor example, see fig, 13,) By means of the dy-
namic response factor envelope, the maximum deflectiom of
the structure in each mode during the landing may be evalu-
.ated quite simply. Considering any single mode, it is as-
sumed that the etructure is restrained to deflect 1in that
modeé only, while the maximum value of the generallzed force
is applied statically. The deflection may be computed under
these conditions and then multiplied by the dynamlc response
factor 1n order to obtain the maximum dynamic deflection
during the landing.

ot 9)
Ri(max) . v Pt )max T (12)

My Wy*

It 1s apparent that the phase relations between the modes

are lost when an approach of this type is employed. However,
this is not serious since for design purposes 1t must be
assumed that sometime during the life of the airplane the
phasing between the modes will be such as to produce the
worst combination of stresses. For this reason, the maximunm
deflections are superposed without regard for phase in order
to yield the most critical combination.

9, THE LANDPLANE WING

In tte case of the landplane, the forces and moments
are applied to the airplane structure through the shock
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strut~-tire system. These consist of a force applied in an
axial direction along the shock strut caused by the landing
reaction component parallel to the strut, and a moment about
the landing gear attachment point caused by the landing re-
action component perpendicular to the strut, Two dynamic
response factors must be determined. One for the axial strut

force, and one for the moment about the landing gear attach-
ment point.

The shock strut axial force.- A study of force-time
curves for axlal strut reactions obtained from drop and
flight test data shows that they differ consideradbly with
Pilot technique and landing attitude. A group of six tyves
of force-time curves are considered which would represent

various types of strut characteristics. These are shown in
figure 12,

NN

‘J.IN), (1) TIN (2) l*__ TIN—“" (3)

Drop test (a)
(4)

Figure 12

Dynamic response factor curves similar to figure 11 have
been determined for each of these slix curves by means of the
mechanical analyzer (reference 1). The points which define
these curves have been plotted on one graph in figure 13, and
a smooth envelope curve has been drawn which bounds all of
them. The condition, which the envelope shown in figure 13
represents, exceeds in severity the condition of the six
types of landings considered. It is possible that after con-
sideration of a large number of shepes of axial shock strut
force-time curves taken from drop and flight test records, an
envelope of this type may well represent conditions which ex-
ceed in severity every probable landing which would be exper-

‘ienced during the normal operation of a land-type airplane.
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In order to apply the landplane dynamic response factor
envelope, the impulse period must be known, A plot of
limited data available at the Burocau of gross weight against
landing gear vertical impulse period during the first impact
of landing as dotormined by flight test is shown on log-log
paper by figure 14. This graph has been determined from ac~-
celerometer records of various types of landings made by 1l
airplanos of various weights, EXach point ropresents an av~
oragoe 0f several landings, The equation which fits the
curve drawn in figure 14 is

w Os14758 ’
Ty = 0.25 {TG'EB} (13)

where
Tyy axial shock strut impulse period in seconds
W gross welght of airplane in pounds

The wheel drag force.- The characteristics of the drag

force on the wheel are not as well known as those of the
axial strut force, The drag force is produced by the spin-
ning up of the wheel when ground contact is made, If it is
assumed that the tire is slipping or on the verge of slip-
ping on the runway at all times during the wheel spin-up
time, and that the coefficient of eliding friction w 1ise
constant, the following differential equation may be written,

I, 8
D(t) = pN(t) = - (14)
Te
Integrating once gives
T1p
Vily
= N(t)at (15)
r *u
e 0

whereo
Vl landing speed, feet per second
Iw moment of inertia of wheél and tire, slug-feet square

T effective rolling radius of wheel under lmpact loading,
feet
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Figure 13.- Dynamic response factor envelope for landplane axial shock
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Tip period of drag force inpulse, seéconds

If the shock strut axial force is assumed to0 grow linearly
with time during the wheel spin-up period, then equation
(15) may be solved for the maximum value of the drag force
in terms of the period of the drag force impulse,

2v, I
2 ——t W (16)

D
max >
re"T1p
With the assumptlons used to write equation (16), the drag
force-time variation is of the type shown in figure 15,

D(t) §
I
Dma'xA
1L

k*--TID ___4 ]
Figure 15

The dynamic response factor curve for the force-time
relation shown by figure 15 is given in figure 16, The
wheel spin-up time is of the order of one-fourth to one-
fifth of the axial strut impulse period, and the wheel is
often up to speed before the axial strut force reaches its
maximum valuc,

In the case of modern large aircraft with retractable
landing gears, the assumption that the landing gear leg 1is
rigid in fore and aft bending may be consideradbly in errore.
Because of this lack of rigidity, there is an additional vi-
bration mode to be considered which involves large wheel and
strut amplitude and very 1little wing torsional motion. This
lack of strut rigidity may be particularly troublesome if
the fundamental fore and aft bending frequency of the land-~
ing gear is coincident with some other mode of the structure,
and resonance is established,

In a general consideration of the landplane landing
problem, drift and one wheel landings which excite antisym-
metric wing oscillations should be considered as well as sym-
metric landings, The principles discussed heretofore are
quite general and apply oqually well in elther case.
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Dynamic response factor curve for

landplane drag force impulse of
the type shown by figure 15.

=L

o4

~od

5 8 10 12
Period of impulse _ Tp

Period of jth mode T3

Figure 16.
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10, THE FLYING BOAT WING

In the flying boat problem, the forcing impulses are
transmitted to the wing through the hull structure, and the
prodblem may be assumed identical to the landplane problem
except that the force and moment is applied at the center
line 0of the airplane rather than outboard at a landing gear
station, The problem of the impact or a flying boat hull in
water is considerably more complex than the landplane impact
problem. A limited amount of test data is available showing
time histories of center of gravity vertical and drag ac-
celerations, and pitching acceleration for flying boats.
These records indicate that the time history of the landing
reaction varies widely according to landing attitude, pilot
technique, condition of seaway, and detailed characteristics
of hull, Theory on the seaplane impact problem is extensive,
however, its applicability to the complex hull shapes of
modern flying boats has not yet been demonstrated, and hence
little attempt is made to use it for design purposes, Not
only the force-time relations of the vertical and drag forces
are necessary, but also their lines of action on the hull
bottom must be known, Of these necessary items, the charac-
teristics of the vertical force are more completely known
than any of the others, Very little general information is
avallable concerning the drag force and hov the exact line
of action of the vertical and drag forces vary throughout
the impact poeriod, Because of this lack of information, it
is difficult to determine exactly how the impulses are ap-
plied to the flying boat wing. Furthermore, the influence
of the moment on the wing vibration is undetermined unloess
the effect of fuselage and tail oscillations are considercd,
Such a consideration is beyond the scope of this discussion,
A& first approximation may be obtained by considering only
the effect of the vertical force applied at the elastic axis
of the free wing, In the absence of more complete test data
it may be assumed that the vertical force on the seaplane
hull, during the initial landing impact, varies as a half
cycle of a sine wave, A dynamic response factor envelowne
has been determined for a half cycle of a sine wave impulse
and is given in figure 17, The variation in the impulse
period is as wide as the variation in the shape of the im-
Pulse curve, and hence it is not possidle.to derive an em-
Pirical relation for the impulse period from test data, as
was the case with the landplane. In order to apply the dy-
namic response factor curve, an impulse period must be as-
sumed, Or a value taken from flight test data on an airrlane

I
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of similar size to the one being investigated.l A conserva-
tive procedure, in any case, would be t0 choose a period
ratio TI/Tj s0 as to yield the most critical combination

of stresses,
11, ILLUSTRATIVE NUMERICAL EXAMPLE FOR LANDPLANE WING

Phe principles discussed in section 9 are illustrated
by a numerical example in which the stresses due to landing
in a four~engine land type bomber are computed. Mode shapes
and frequencies of the free wing of this alirplane were
computed and transmitted ir a report prepared for the Army
Air Forces at C.I.T. by M. A, Biot in 1941, The bPending and
torsional moments are computed at seven wing statioms. Imn
this example, the wing chord is assumed parallel to the
ground during the landing, and the landing gear strut is
assumed to be perpendicular to the wing chord line. The land-
ing gear strut is assumed to be rigid and rigidly attached to
the wing. PFigure 18 shows the assumed conditiomns during the

landing.
Elastic axis
v
C——S\ Angular dis-
////ﬁs\\\ placements and
torques
100"
Linear displacements
D(t) .- and forces
N(t) '

Figure 18

In this particular example, the elastic axis pssses di-
rectly over the landing gear leg as is shown by figure 18,
The computations may be carried out by tadle 1 which is self-
explanatory when reference is made to appendix I. A table
similar to table 1 is required for each wing mode. The mode
shapes and frequencies of the free wing are teken from the
Army Air Forces report prepvared at C,I.T. and tabulated in
tables 2, 3, and 4, where the firet three wing modes are
considered. The following additional data are required to
complete the tables.
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Gross Welght, W .useeeeeoecceecssnnscacsssenssnsss 47,200 10
Gross weight less welght of landing gear, Wy «.... 44,426 1D
Moment of inertia of wheel and tire, Iy v....... 28 slug-ft?
Effective rolling radius, Ty sevecesscnccrsosrsonans 2.08 £t
Landing speed, VS e s ecsssnessesresssssssssensrses 124,8 fps

From equation (13), the period of the vertical impact
force is,

W 10.1475 0010.1475
T = 0,2 —— = 0, 472001 = 0,441 d
IN 5 {;OOOJ 25 1000,j 41 secon

The maximum value of the vertical impact force is

Npex = 3 Wgn = = x 44,426n = 22,218n

where n 1is the ultimate vertical load factor. In this ex~
ample, it is assumed that n = 4.

Npax = (22,213)(4) = 88,852 pounds

It is assumed that the period of the drag force is one~fifth
that of the wvertical force.

_ 1 _ 0.441 _ '
TID ol TIN = = = 00,0882 second

From equation (16), the maximum value of the drag force is

. _ RWNIly  (2)(224,.8)(28)
max - r 3T ) (2.08)%(0,0882)
e ~ID S .

= 18,290 pounds

From the data computed in columns 5, 6, 13, and 14 in
tables 2, 3, and 4, wing bending and torsional moments are
plotted in figures 19 and 20, respectively, for each mode in
the first and second extreme positions of oscillation. Orit-
ical values of bending moment and torsional moment at each
station are obtained by adding corresponding ordinates of
the three bending moment curves on the same side.of the zero
axig. For example, at the airplane center line, the criti-
cal negative bending moment is obtained by adding:
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Inch~-pounds

Tirst mode - positive maximum o .« + &+ « &« & « o« + « o =3,940,000
Second mode - negative maximull . o ¢ ¢ o ¢ o o« o o o -790,000
Third mOde - negative BMaXimum « o e ¢ ¢ o s ¢ o o o o ‘212!000

Maximum negative bending moment at the center line = ~4,942,000

Similarly, for the maximum negative torsional moment at
the center line, the following are added:

Inch~pounds

First mode ~ positive maximum . . 4 « . o o o ¢« & o o =1,092,150
Second mOde o positive maximum . e o o o o [ . e . -730316
Third mode ~ positive maxXimum . « « ¢« v o o o o o o -142,525

Maximum negative torsional moment at the center line= -1,307,991

The frequency of the fourth mode is approximately 1350
epm, and hence its contridution to the stress would be small.

This 1is true because of the tendency for d%) to be reduced

to small values in the higher modes, and because of the in-
hibitive effect which the aerodynamic and structural damping
has upon the higher modes, It is important to remember that
the stresses, shown here must be superposed upon the steady
stresses produced by the aserodynamic loads on the wing dur-
ing landing, '

12, ILLUSTRATIVE NUMERICAL EXAMPLE FOR SEAPLANE WING

The principles discussed for the seaplane are 1llus-
trated by a numerical example. In this example, a four-
engine land type patrol bomber is considered as bdeing a
flying boat in order that the same mode shapes and fre-
quencies may be used. The bending and torsional moments
are computed at seven wing stations for a vertical load
factor of 1, and the effect of the drag force is neglected.
The first three deformation modes of the free wing are
considered, and the computations are carried out by means
of tadle 1. The vertical force on the hull 1s assumed
perpendicular to the wing chord during impact.
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The following sketch shows'the assumed conditions during
the landing. :

Blastic axis

Lnt) Figure 21

For purpose of this example, an impulse period of 0.2
second 1s arbitrarily assumed. From the data computed in
columns 5, 6, 13, and 14 in tables 5, 6, and 7, wing bending
and torsional moments are plotted in figures 22 and 23,
respectively, for each mode in the first and second extreme
positions of oscillation for a vertical load factor of 4.
The values plotted in figures 22 and 23 are four times the

value s shown in columns 6, 6, 13, and 14 in tadbles 5, 6,
and 7. .

13, DISCUSSION

In the usual landing with large aircraft there is a
period of initial impact followed by a short interval during
which the airplane is airborne. It is to conditions existing
during the initial impact and shortly thereafter that the
prosent theory of transicnts is applicable. In the ensuing
motion during run-out, the wheels are substantially in con-
tact with the ground or the hull with the water. During this
latter phase of the motion, the structure has imposed upon 1t
a series of alternating loads depending upon the ground con-
tour or the condition of the seaway. It may be possible that
a resonance condition during the latter phase of the landing

may produce stresses more critical than those produced during
and shortly after the initial impact.

A preliminary analytical investigation into the effect
of aerodynamic damping has shown that it may be neglected
with small error; however, this is subject to experimental
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check. Damping has the effect of reducing the amplitudes
and coupling the modes.

Coupling between the motion of the structure and the
external force is neglected in this discussion; however this
assumpbtion is also subject to experimental check.

The methods discussed here are not universally appli-
cable to all types of transient problems, and should be used
with discretion. For example, appendix III discusses the
case of a simple beam subjected to a unit impulse applied at
the center. In this case, the method is not applicabdvle,
since reference to equations (III-11) and (III-13) shows
that the seriss describing the moment and shear does not
converge. However, in practical problems, the applied forces
do not behave like the impulse type, but rather behave like
the step type. In this case, roference to equations (III-10)
and (III~12) shows that the series describing the moment con-
verges, whereas the series describing the shear does not con-
verge when maximum values are added regardless of sign. 1In
the case of the procedure discussed here, convergence of the
series describing the moment and shear is dependent upon di-

minishing values of &g? Thig is assured because of the

characteristic taper of the airplane wing from center line
to wing tip, and because ég) is measured at the inboard

side of the wedge in its reglon of greatest mass per unit
length. These limitations regarding the convergence of the
series apply even more so if one attempts to predict the
local accelerations in the structures. This aspect of the
problem becomes significant when evaluating the dynamic
stresses on the attachments of small localized masses. It
is not possible to formulate at this stage a general rule as
to how many modes should be taken, and each applicatlion of
the procedure will present a different problem depending
upon the mode shapes and frequencies of the wing,

In the landplane case, the position of the landing gear
leg has an important effect upon the wing dynamiec loads dur-
ing impact. For example, if the leg intersects a nodal line
for one of the modes, that particular mode is not excited.
The effect of various landing gear positions on the stresses
may be readily studied by these methods.

In studying the present day large aircraft with con-
ventional wings, it appears as though wing dynamic loads will
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produce torsional moments inboard of the nacelles which,
aggravated by the overhanging engines, may be critical in
severe impact. The design of the nacelle carry through
structure in bending may be controlled by dynamic loads,
and the possibility of critical wing bending stresses is
not precluded in very large aircraft,

A comparison between the landplane and flying boat ex-
amples givon in sections 12 and 13 shows that the wing dy=-
namic loads in the flying boat are more severe than in the
cagse of the landplane. This is attributed to two causes:

(a) In the case of the second mode in the landplane
example, the drag force actually has a reliev-
ing effect on the stresses producsd by the
vertical force.

(b) In the case of all modes &g) at the center line
is greater than &%) at station 1 -~ that is,

the forces introduced at the landing gear ars
applied nearer to the nodal lines than forces
introduced through the hull at the airplane
center line,

The present work is of a preliminary nature and many
questions are left for further investigation. It is evident
that the methods here presented are not restricted to the
evaluation of landing loads, since it is possible at least
theoretically to handle in the samoc way dynamic loads due to gun
recoill and "flak." It must be remembered, however, that in
flight the acrodynamic forces become of primary importance
and cannot be generally neglocted. This 1s especially true
in the determination of dynamic loads due to gusts in which
case the flutter characteristics of the airplane must have a
preponderant effect. It must also be kept in mind that the
poesibility that the representation of the transient motion
es a superposition of natural modes is not necessarily the
test procedure in all cases. Considering the dynamic stresses
from the standpoint of wave propagation in the elastic system
might turn out to be a more direct and significant viewpoint
in the case of high frequency transients. This viewpoint
also eliminates the convergence difficulties mentioned above
in connection with the determination of local accelerations,
Another case where natural modes loge their significance
Is that of resonance between loosely coupled parts of the
structure, in which case the vibrational energy at one loca-
tion 1s gradually transforred to another.
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Examples shown in the present work are limited to the
wing structure under the assumptions of a symmetric landing.
Such a landing condition is exceptional, TFor a landplane
the degree to which the unsymmetric modes are excited by an
unsymmetric landing depends a great deal on the time inter-
val betwecen the instant at which the left and right wheel
enter in contaet with the ground. Statistical data on this
time interval can only be obtained by flight testing. No
example has been presented of an application of the proced-
ure to the evaluation of landing loads in the fuselage and
tail. However, the same methods are directly applicable to
this case, provided the natural modes of the fuselage and
tail have been determined. Data odtained during landing
tests of flying boats have shown that modes of the fuselage
and tail are excited and result in a "tail whip" effect
causlng consideradble dynamic overstress in the tall and aft
portion of fuselage.

Bureau of Aeronautics,
U. S, Navy Department,
Washington, D, C,, August 10, 1944.
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APPENDIX I

GENERAL MATHEMATICAL THEORY OF TRANSIENTS IN AN

UNDAMPED ELASTIC STRUCTURE

The general transient theory of linear systems with
lumped or distributed parameters is well known and has been
extensively developed in the case of electrical network
theory (references 2 and 3). The problem of transients in
airplane structures is identical in ite mathematical form.
In an elastic system with distributed parameters there is a
space as well as a time variation in the variables. The
problem may be considered with two viewpoints. The motion
may be considered to be made up of a series of traveling
waves, or it may be considered to be made up of a superposi-
tion of natural oscillations, in which case to be rigorous,
an infinite number is required. The airplane structures
problem is treated here from the standpoint of a superposi-
tion of natural oscillations.

In a transient problem of this type where maximum val-
ues occur very soon after the motion starts, the effect of
danping may be Justifiably neglected. The motion of an un-
damped elastic system may be shown to be composed of a super-
position of normal modes which are orthogonal, The airplane
structure vidbrates in 2 series of normal modes when excited
by a random impulse as is the case of any elastic systen,
These normal modes are each characterized by a certain mode
shape and a certain frequency. TFor the airplane they are
composed of coupled oscillations of the wing, fuselage, and
empennage system, These calculated mode shapes and fre-

quencies may bde obtained from a ground vidbration survey of
the airplane.

If each normal mode shape,is considered to be repre-

eented by the space function 0(1) the displacement of any
point of the structure at any time may be written as

n
z = E ¢(i) a3 (I-1)
i=o
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where n modes are- coneidered, and where the q3 terms are

regarded as generalized coordinates.

The kinetic energy of the structure 1is

n .
T - }.f{ Y e ii}a .
2
i=o

(1-2)

Considering the Jth generalized coordinate, and the orthog-
anality condition, the following equation may be written

—d'_. iT__ = a ( ) ® = a
THCYY qﬁL/n[¢ J ] dm = M, a,
My -_-f [M”]a dm

The potential energy of the structure is

where

n
= 1 2 a
i=0

Considering the Jjth generalized coordinate, write
AU _ 2
aq

By Lagrange's equation
My gy + ¥ywy® a5 = Qy

where Qj is the generalized force corresponding to
mode, and 1s evaluated by virtual work principles.

(1-3)

(1-4)

(1-5)

(1-6)

the jth
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It GWJ is the virtual work produced when all the ex-
ternal forces are allowed to move through displacements cor-
responding to a virtual displacement §qj, then the gener-
alized force QJ ig defined by

&W
Qy = —i (1-7)
8ay
The complete motion of the structure is then defined by a
series of differential equations of the form

iy + w0y =yl

where the form of the right-hand slde is dependent upon the
character of the applied forces.

In general, the aerodynamic applied forces on an airplane
strueture vary with deflection, velocity, and acceleration of
the structure, and the landing reactions vary with time in a
manner which is determined by experiment., In the case where
the external forces are landing reactions assumed to be givon
functions of time, the equations governing the response are

. Qs(t)
qy + wja q; = —ﬁ;—— (1-8)

This is the differential equation for the undamped mo-
tion of a simple oscillator of mass MJ and natural frequency

Wy, which is under the influence of an arbitrary forcing
impulse Qj(t).

If Qj(t) is 2 unit step function 1(t), the response
a which is called the indicial admittance (references 3
and 4) is

A(t) = -1 (1 -~ cos w3 t) 1(t) (I-.9)
My wy?
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The response qj to any arbditrary forcing ilmpulse QJ(T)
may be written by the superposition theorem as

_ - I-1
q 4 MJ Y JP QJ(T) sin wy (t T) 4T (1-10)

T 1s a varliable of integration,.

When this integration with respect to T 1is carried out
between the limits O and t, a function of time results

which is the time history of the deformation of the Jjth mode.

The stress at any point in the structure in the Jjth mode 1is
proportional to the deformation of the Jth mode,

() _ (9, . ‘ﬂ’

s qj

a7 (I-11)

When the constant A(j) is properly chosen, equation (1-11)
yields the stress time history of some particular point in
the structure caused by the deformation of the Jjth mode.

The stress s(ﬂ) in the Jjth mode at the kth wing station
may be written as

(9 | L)

M LAY (1-12)

The total stress at the kth wing station for n modes is
obtained by superposition as

n

Sy = ;z (;) ay (1-13)

i=1

Note on the Computation of MJ for the Wing

2
M,‘] =f [¢<j)] dm

From equation (I-3)
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For the case of the wing, the mode shape is conveniently de-
scrived by considering the wing deformation to be made up of
a bending of the elastic axis, and a twisting about the
elastic axis. Considering the wing to be divided into k
spanwise stations, the normal function descriding any point
on the chord of the kth station is (see fig. I-1)

¢(£) = h(i) + x a(g) (1-14)
—
. . t V
éi ) Elastic axis q()i) ‘j)
+ o

In figure I-1 positive bending deflections are downward and
pesitive pitching deflections are stalling.

Using equations (I-3) and (I-12), the following equa-
tions may be written

8
k 2 K
My = z {[hl(cj)] my + [a,)(:'])] Iy + 2h1({j) a,f:'j) Sk} (I-15)

Note on the Computation of the Generalized Force Qj

Prom equation (I-7)
Q, = 8%
J

BQJ
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If the external force TF(t) 1is a landing reaction consid-
ered to be applied at one point to the wing structure, the
virtual work may be written as

W = F(t) szp

where gp is the value of 2z 1in the directlion of the ap-

Plied force evaluated at the point F, the point of appli-
cation of the landing force.

From equation (I.-1)

g = Q(l) a, + ¢(a) 9 * . . . o (n) an

hence

() (2) (n)
§W=F(t){¢F 6q1+¢F qu+...¢p ﬁq,}

where O(g) is the normal function evaluated at the point
of application of the force F,.

Then
W (3)

= i = F(t) (I-186)
Qs ey r .

The factor ¢(§) i a measure of the contribution of

the external force to the generalized force in the jth mode.
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APPENDIX II

ANALYSIS OF THE MOTION OF A SYSTEM CONSISTING OF TWO SPRING-

CONNECTED MASSES EXCITED BY AN ARBITRARY FORCE

2 }«-xl ]
K
m M < F(t)

T 7 LAN A AR A 4y AR AN AN ANV AN A A 4

Figure II-1

It is shown below that the motions of the mass m are
given by a superposition of the motlon of the center of
gravity of the system, and the motion of & simple oscillator
which will be defined. Denote by x31, Xz the coordinates

of the masses M and n,

The differential equations defining the motion are:

M;;l + k(xl — XQ) F(t) ) (II—l)

0 (11-2)

mig hand k(xl bt xg)
The motlion of the center of gravity of the system is de-
termined first. Adding equations (II-1) and (II-2) gives
ME, + mX; = F(t)
Let q, be the displacement of the center of gravity of

the system

nx, + Mx, = (M + m)q,
and

mX, + M, = (M + m)q
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Hence

(M + mn) c'.io =.F(t)

is the 4ifferential equation defining the motion of the cen-
ter of gravity of the eystem.

The motion of the mass m relative to the center of
gravity of the system i1s determined next.

Multiplying equations (II-1) and (II-2) by m and M,
respectively, and sudbtracting, the following equation is ob-
tained )

Mn(%, - %,) + k(M + m)(x, - x;) = nF(t)

and substituting

- M ( )
- x -
11 M+ ! x2

which represents the motion of m relative to the center of
gravity; the differential equation may be rewritten as

e

m s mn+ M . I
W (m + M) q, + k:<~—if—:> aQ, = " F(t) (I1-4)
Let
M, = %’(m + M)
2 M
M,w = k (E_i__>
Rl | M
m
and write
My g1 + Mi®2 g3 = Qu(t) (11-5)

This 1s the differential equation defining the motion of m
relative to the center of gravity of the system. It is also
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the differential equation for a simple oscillator. (See fig.
I1-2.)

_ 2 -——q
jik'ulw41~ - e
- 4
y M3 1
7 7 7 7 /7 72 7 7 7 7 7 77

Figure 1I-2

The actual displacements %X, and X, may be derived by
solving for x,, X,

From the relations

mx, + Mx; = (M + m) q,

M

(x, -~ x.)
1 2 M+ nm 1

may be found

=l

X, = go + a3

3

"

do ~ Q1

The motion may be considered as the superposition of two
configurations, one defined by qo. a rigid motion of the

system, the other defined by q, represente a configuration

in which the center of gravity remains fixed whlle the masses
M and m move in opposite phase with amplitudes inversely
proportional to their masses. The equivalent system of fig-
ure II-2 represents the motion in the latter configuration.
It will be noted that the generalized mass M; may be derived

quite simply by considering the kinetic energy T in the
corresponding configuration
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or

¥
0
2 =

m -
-)—-‘(m + M) q1

Equating this to the kinetic energy of the equivalent oscil-
lation

1 . 2
T =—-M q,
2

there is found

m
M1=-ﬁ(m+M)

Similarly Q,(t) may be derived by equating the work done by

F(t) 1in the corresponding configuration and the work done by
Qi in the equivalent systenm.

Q,l(t) q; = F(t) % d3

/' Q(t) = ¢ F(v)

APPENDIX III

TRANSIENTS IN A PRISMATIC BEAN SIMPLY SUPPORTED AT THE ENDS

WITH A FORCE APPLIED AT THE CENTER

l?(ﬂ
= —m——
|,

Figure III-1l
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The natural mode shapes and frequencies of a simply sup-
ported beam with constant cross section may be shown to be:

o) - sin l’l‘_". (111-1)
2 2
Wy = iom EI4 (111-2)
pAl

where

B modulus of elasticity

I moment of inertia
mass per unit volume

A cross-sectional area

) length

From equation (I-1) of appendix I, the displacement of any
polnt on the beam may be written as

o [+-]
y = Z o (1) o, = Z sin 1TX g (111-3)
i=o =1

From equation (I-10) of appendix I, the generalized coordinate
qy 1s expressed by

a = —= fQi(T) sinw, (¢t - T) a7 (111-4)

where 1

2
M, =f [cb(i)] dm:pAfsinal”;—xdx=l%‘5 (111-5)
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and

(1) = ¢(;) F(T) = ?; F(T) (I11-6)

Substituting equations (III-4), (III.5), and (III-6) into
equation (III-3) yielads,

g =

™
(_\/19
€
2l
@
[
s

lpd

t,

t
%; sin 1¥f ]P F(T) sin ®; (¢ - T)AT(III-7)
o
When F(T) 1is & unit step, the response is:-
o
y = —2— }E 1 ain %? sin 1%5 (1 ~ cos Wy &) (111-8)

When F(T) 1is a unit impulse (1). the response is obtained

by a time differentiation of equation (III-8). The response
tc a unit impulse is:

[o ]
=.—§I E: A7 g4n 1%5 sin W3 ¢ (111-9)

Ef
Since M = -EI 2J,
ax?
being subjected to & unit step force is,

the moment in the beam at any time after

2]
Y = EE' }: i%. iT gin 5%5 (1 - cos Wy t) (I11-10)

The moment in the beam at any time after being subjected to a
unit impulse is,

(1)4 unit impulse is an infinite force applied during a
vanishingly small interval of time in such a way that the
time integral [ F(T) 4T = 1 (reference 4).
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o -]
E; in 1T g3pn 10X 45 w0, (111-11)

2
w= N 2 1

‘Olb:l
P pin

The shear in the beam at any time after being subjected to a
unit step force is,

o
=2 1 sin 31 cos imx (1 - cos Wy t) (111-12)
T i 1

The shear in the beam at any time after being subjected to a
unit impulse is,

W

aM _ 2o
1

oo
}; cos LM% gyn wy ¢ (111-13)
S

A study of equations (III-10), (IIIX-11), (III-12), and (III-13)
indicates the shortcomings of the procedure when adding con-
tributions of each of the modes to moment and shear for a
simple prismatic beam with a force at the center. This is
illustrated in table IXI.l., Limitations of a similar nature
are encountered in all problems where the motion is described
ag a superposition of modes.

TABLE III-1

UNIT STEP UNIT IMPULSE
Percent of lst mode Percent of lst mode
Moment Moment
l1st mode 100 l1st mode 100
2nd mode 11.1 2nd mode 100
3rd mode 4 3rd mode 100
4th mode 2.04 4th mode 100
Shear Shear
lst mode 100 l1st mode 100
2nd mode 33.3 2nd mode 300
3rd mode 20 3rd mode 500
4th mode 14.23 4th mode 700
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